3.2.1 \(\int \frac {\sec ^3(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^3} \, dx\) [101]

3.2.1.1 Optimal result
3.2.1.2 Mathematica [A] (verified)
3.2.1.3 Rubi [A] (verified)
3.2.1.4 Maple [A] (verified)
3.2.1.5 Fricas [A] (verification not implemented)
3.2.1.6 Sympy [F]
3.2.1.7 Maxima [A] (verification not implemented)
3.2.1.8 Giac [A] (verification not implemented)
3.2.1.9 Mupad [B] (verification not implemented)

3.2.1.1 Optimal result

Integrand size = 31, antiderivative size = 125 \[ \int \frac {\sec ^3(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^3} \, dx=\frac {B \text {arctanh}(\sin (c+d x))}{a^3 d}+\frac {(A-B) \sec ^2(c+d x) \tan (c+d x)}{5 d (a+a \sec (c+d x))^3}-\frac {(2 A-7 B) \tan (c+d x)}{15 a d (a+a \sec (c+d x))^2}+\frac {(4 A-29 B) \tan (c+d x)}{15 d \left (a^3+a^3 \sec (c+d x)\right )} \]

output
B*arctanh(sin(d*x+c))/a^3/d+1/5*(A-B)*sec(d*x+c)^2*tan(d*x+c)/d/(a+a*sec(d 
*x+c))^3-1/15*(2*A-7*B)*tan(d*x+c)/a/d/(a+a*sec(d*x+c))^2+1/15*(4*A-29*B)* 
tan(d*x+c)/d/(a^3+a^3*sec(d*x+c))
 
3.2.1.2 Mathematica [A] (verified)

Time = 0.60 (sec) , antiderivative size = 107, normalized size of antiderivative = 0.86 \[ \int \frac {\sec ^3(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^3} \, dx=\frac {2 \cos \left (\frac {1}{2} (c+d x)\right ) \sec ^3(c+d x) \left (60 B \text {arctanh}(\sin (c+d x)) \cos ^5\left (\frac {1}{2} (c+d x)\right )+(8 A-43 B+(6 A-51 B) \cos (c+d x)+(A-11 B) \cos (2 (c+d x))) \sin \left (\frac {1}{2} (c+d x)\right )\right )}{15 a^3 d (1+\sec (c+d x))^3} \]

input
Integrate[(Sec[c + d*x]^3*(A + B*Sec[c + d*x]))/(a + a*Sec[c + d*x])^3,x]
 
output
(2*Cos[(c + d*x)/2]*Sec[c + d*x]^3*(60*B*ArcTanh[Sin[c + d*x]]*Cos[(c + d* 
x)/2]^5 + (8*A - 43*B + (6*A - 51*B)*Cos[c + d*x] + (A - 11*B)*Cos[2*(c + 
d*x)])*Sin[(c + d*x)/2]))/(15*a^3*d*(1 + Sec[c + d*x])^3)
 
3.2.1.3 Rubi [A] (verified)

Time = 0.88 (sec) , antiderivative size = 134, normalized size of antiderivative = 1.07, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.323, Rules used = {3042, 4507, 3042, 4496, 25, 3042, 4486, 3042, 4257, 4281}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^3(c+d x) (A+B \sec (c+d x))}{(a \sec (c+d x)+a)^3} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^3 \left (A+B \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^3}dx\)

\(\Big \downarrow \) 4507

\(\displaystyle \frac {\int \frac {\sec ^2(c+d x) (2 a (A-B)+5 a B \sec (c+d x))}{(\sec (c+d x) a+a)^2}dx}{5 a^2}+\frac {(A-B) \tan (c+d x) \sec ^2(c+d x)}{5 d (a \sec (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^2 \left (2 a (A-B)+5 a B \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^2}dx}{5 a^2}+\frac {(A-B) \tan (c+d x) \sec ^2(c+d x)}{5 d (a \sec (c+d x)+a)^3}\)

\(\Big \downarrow \) 4496

\(\displaystyle \frac {-\frac {\int -\frac {\sec (c+d x) \left (2 (2 A-7 B) a^2+15 B \sec (c+d x) a^2\right )}{\sec (c+d x) a+a}dx}{3 a^2}-\frac {a (2 A-7 B) \tan (c+d x)}{3 d (a \sec (c+d x)+a)^2}}{5 a^2}+\frac {(A-B) \tan (c+d x) \sec ^2(c+d x)}{5 d (a \sec (c+d x)+a)^3}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {\int \frac {\sec (c+d x) \left (2 (2 A-7 B) a^2+15 B \sec (c+d x) a^2\right )}{\sec (c+d x) a+a}dx}{3 a^2}-\frac {a (2 A-7 B) \tan (c+d x)}{3 d (a \sec (c+d x)+a)^2}}{5 a^2}+\frac {(A-B) \tan (c+d x) \sec ^2(c+d x)}{5 d (a \sec (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (2 (2 A-7 B) a^2+15 B \csc \left (c+d x+\frac {\pi }{2}\right ) a^2\right )}{\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx}{3 a^2}-\frac {a (2 A-7 B) \tan (c+d x)}{3 d (a \sec (c+d x)+a)^2}}{5 a^2}+\frac {(A-B) \tan (c+d x) \sec ^2(c+d x)}{5 d (a \sec (c+d x)+a)^3}\)

\(\Big \downarrow \) 4486

\(\displaystyle \frac {\frac {a^2 (4 A-29 B) \int \frac {\sec (c+d x)}{\sec (c+d x) a+a}dx+15 a B \int \sec (c+d x)dx}{3 a^2}-\frac {a (2 A-7 B) \tan (c+d x)}{3 d (a \sec (c+d x)+a)^2}}{5 a^2}+\frac {(A-B) \tan (c+d x) \sec ^2(c+d x)}{5 d (a \sec (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {a^2 (4 A-29 B) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+15 a B \int \csc \left (c+d x+\frac {\pi }{2}\right )dx}{3 a^2}-\frac {a (2 A-7 B) \tan (c+d x)}{3 d (a \sec (c+d x)+a)^2}}{5 a^2}+\frac {(A-B) \tan (c+d x) \sec ^2(c+d x)}{5 d (a \sec (c+d x)+a)^3}\)

\(\Big \downarrow \) 4257

\(\displaystyle \frac {\frac {a^2 (4 A-29 B) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+\frac {15 a B \text {arctanh}(\sin (c+d x))}{d}}{3 a^2}-\frac {a (2 A-7 B) \tan (c+d x)}{3 d (a \sec (c+d x)+a)^2}}{5 a^2}+\frac {(A-B) \tan (c+d x) \sec ^2(c+d x)}{5 d (a \sec (c+d x)+a)^3}\)

\(\Big \downarrow \) 4281

\(\displaystyle \frac {\frac {\frac {a^2 (4 A-29 B) \tan (c+d x)}{d (a \sec (c+d x)+a)}+\frac {15 a B \text {arctanh}(\sin (c+d x))}{d}}{3 a^2}-\frac {a (2 A-7 B) \tan (c+d x)}{3 d (a \sec (c+d x)+a)^2}}{5 a^2}+\frac {(A-B) \tan (c+d x) \sec ^2(c+d x)}{5 d (a \sec (c+d x)+a)^3}\)

input
Int[(Sec[c + d*x]^3*(A + B*Sec[c + d*x]))/(a + a*Sec[c + d*x])^3,x]
 
output
((A - B)*Sec[c + d*x]^2*Tan[c + d*x])/(5*d*(a + a*Sec[c + d*x])^3) + (-1/3 
*(a*(2*A - 7*B)*Tan[c + d*x])/(d*(a + a*Sec[c + d*x])^2) + ((15*a*B*ArcTan 
h[Sin[c + d*x]])/d + (a^2*(4*A - 29*B)*Tan[c + d*x])/(d*(a + a*Sec[c + d*x 
])))/(3*a^2))/(5*a^2)
 

3.2.1.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4257
Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] 
 /; FreeQ[{c, d}, x]
 

rule 4281
Int[csc[(e_.) + (f_.)*(x_)]/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbo 
l] :> Simp[-Cot[e + f*x]/(f*(b + a*Csc[e + f*x])), x] /; FreeQ[{a, b, e, f} 
, x] && EqQ[a^2 - b^2, 0]
 

rule 4486
Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/(csc[( 
e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[B/b   Int[Csc[e + f*x], 
 x], x] + Simp[(A*b - a*B)/b   Int[Csc[e + f*x]/(a + b*Csc[e + f*x]), x], x 
] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[A*b - a*B, 0]
 

rule 4496
Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*( 
csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-(A*b - a*B))*Cot 
[e + f*x]*((a + b*Csc[e + f*x])^m/(b*f*(2*m + 1))), x] + Simp[1/(b^2*(2*m + 
 1))   Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*Simp[A*b*m - a*B*m + b 
*B*(2*m + 1)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B}, x] && Ne 
Q[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)]
 

rule 4507
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[d*(A*b 
- a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^(n - 1)/(a*f*( 
2*m + 1))), x] - Simp[1/(a*b*(2*m + 1))   Int[(a + b*Csc[e + f*x])^(m + 1)* 
(d*Csc[e + f*x])^(n - 1)*Simp[A*(a*d*(n - 1)) - B*(b*d*(n - 1)) - d*(a*B*(m 
 - n + 1) + A*b*(m + n))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, 
A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] && G 
tQ[n, 0]
 
3.2.1.4 Maple [A] (verified)

Time = 0.69 (sec) , antiderivative size = 92, normalized size of antiderivative = 0.74

method result size
parallelrisch \(\frac {-20 B \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )+20 B \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )+\left (\left (A -B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\frac {10 \left (A -2 B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{3}+5 A -35 B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{20 a^{3} d}\) \(92\)
derivativedivides \(\frac {-\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5} B}{5}-\frac {4 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} B}{3}+\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5} A}{5}+\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) A -7 \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) B +\frac {2 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} A}{3}-4 B \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )+4 B \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{4 d \,a^{3}}\) \(119\)
default \(\frac {-\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5} B}{5}-\frac {4 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} B}{3}+\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5} A}{5}+\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) A -7 \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) B +\frac {2 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} A}{3}-4 B \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )+4 B \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{4 d \,a^{3}}\) \(119\)
risch \(-\frac {2 i \left (15 B \,{\mathrm e}^{4 i \left (d x +c \right )}+75 B \,{\mathrm e}^{3 i \left (d x +c \right )}-20 A \,{\mathrm e}^{2 i \left (d x +c \right )}+145 B \,{\mathrm e}^{2 i \left (d x +c \right )}-10 \,{\mathrm e}^{i \left (d x +c \right )} A +95 B \,{\mathrm e}^{i \left (d x +c \right )}-2 A +22 B \right )}{15 d \,a^{3} \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )^{5}}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) B}{a^{3} d}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) B}{a^{3} d}\) \(146\)
norman \(\frac {\frac {\left (A -11 B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{9}}{60 a d}-\frac {\left (A -7 B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{4 a d}+\frac {\left (A -B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{11}}{20 a d}-\frac {\left (A +9 B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}}{10 a d}-\frac {\left (3 A -43 B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{10 a d}+\frac {\left (-59 B +7 A \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{12 a d}}{\left (-1+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )^{3} a^{2}}+\frac {B \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{a^{3} d}-\frac {B \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{a^{3} d}\) \(209\)

input
int(sec(d*x+c)^3*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^3,x,method=_RETURNVERBO 
SE)
 
output
1/20*(-20*B*ln(tan(1/2*d*x+1/2*c)-1)+20*B*ln(tan(1/2*d*x+1/2*c)+1)+((A-B)* 
tan(1/2*d*x+1/2*c)^4+10/3*(A-2*B)*tan(1/2*d*x+1/2*c)^2+5*A-35*B)*tan(1/2*d 
*x+1/2*c))/a^3/d
 
3.2.1.5 Fricas [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 183, normalized size of antiderivative = 1.46 \[ \int \frac {\sec ^3(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^3} \, dx=\frac {15 \, {\left (B \cos \left (d x + c\right )^{3} + 3 \, B \cos \left (d x + c\right )^{2} + 3 \, B \cos \left (d x + c\right ) + B\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) - 15 \, {\left (B \cos \left (d x + c\right )^{3} + 3 \, B \cos \left (d x + c\right )^{2} + 3 \, B \cos \left (d x + c\right ) + B\right )} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (2 \, {\left (A - 11 \, B\right )} \cos \left (d x + c\right )^{2} + 3 \, {\left (2 \, A - 17 \, B\right )} \cos \left (d x + c\right ) + 7 \, A - 32 \, B\right )} \sin \left (d x + c\right )}{30 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}} \]

input
integrate(sec(d*x+c)^3*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^3,x, algorithm="f 
ricas")
 
output
1/30*(15*(B*cos(d*x + c)^3 + 3*B*cos(d*x + c)^2 + 3*B*cos(d*x + c) + B)*lo 
g(sin(d*x + c) + 1) - 15*(B*cos(d*x + c)^3 + 3*B*cos(d*x + c)^2 + 3*B*cos( 
d*x + c) + B)*log(-sin(d*x + c) + 1) + 2*(2*(A - 11*B)*cos(d*x + c)^2 + 3* 
(2*A - 17*B)*cos(d*x + c) + 7*A - 32*B)*sin(d*x + c))/(a^3*d*cos(d*x + c)^ 
3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d)
 
3.2.1.6 Sympy [F]

\[ \int \frac {\sec ^3(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^3} \, dx=\frac {\int \frac {A \sec ^{3}{\left (c + d x \right )}}{\sec ^{3}{\left (c + d x \right )} + 3 \sec ^{2}{\left (c + d x \right )} + 3 \sec {\left (c + d x \right )} + 1}\, dx + \int \frac {B \sec ^{4}{\left (c + d x \right )}}{\sec ^{3}{\left (c + d x \right )} + 3 \sec ^{2}{\left (c + d x \right )} + 3 \sec {\left (c + d x \right )} + 1}\, dx}{a^{3}} \]

input
integrate(sec(d*x+c)**3*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))**3,x)
 
output
(Integral(A*sec(c + d*x)**3/(sec(c + d*x)**3 + 3*sec(c + d*x)**2 + 3*sec(c 
 + d*x) + 1), x) + Integral(B*sec(c + d*x)**4/(sec(c + d*x)**3 + 3*sec(c + 
 d*x)**2 + 3*sec(c + d*x) + 1), x))/a**3
 
3.2.1.7 Maxima [A] (verification not implemented)

Time = 0.23 (sec) , antiderivative size = 187, normalized size of antiderivative = 1.50 \[ \int \frac {\sec ^3(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^3} \, dx=-\frac {B {\left (\frac {\frac {105 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {20 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {3 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}}}{a^{3}} - \frac {60 \, \log \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}{a^{3}} + \frac {60 \, \log \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - 1\right )}{a^{3}}\right )} - \frac {A {\left (\frac {15 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {10 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {3 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}}\right )}}{a^{3}}}{60 \, d} \]

input
integrate(sec(d*x+c)^3*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^3,x, algorithm="m 
axima")
 
output
-1/60*(B*((105*sin(d*x + c)/(cos(d*x + c) + 1) + 20*sin(d*x + c)^3/(cos(d* 
x + c) + 1)^3 + 3*sin(d*x + c)^5/(cos(d*x + c) + 1)^5)/a^3 - 60*log(sin(d* 
x + c)/(cos(d*x + c) + 1) + 1)/a^3 + 60*log(sin(d*x + c)/(cos(d*x + c) + 1 
) - 1)/a^3) - A*(15*sin(d*x + c)/(cos(d*x + c) + 1) + 10*sin(d*x + c)^3/(c 
os(d*x + c) + 1)^3 + 3*sin(d*x + c)^5/(cos(d*x + c) + 1)^5)/a^3)/d
 
3.2.1.8 Giac [A] (verification not implemented)

Time = 0.33 (sec) , antiderivative size = 147, normalized size of antiderivative = 1.18 \[ \int \frac {\sec ^3(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^3} \, dx=\frac {\frac {60 \, B \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right )}{a^{3}} - \frac {60 \, B \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right )}{a^{3}} + \frac {3 \, A a^{12} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 3 \, B a^{12} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 10 \, A a^{12} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 20 \, B a^{12} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 15 \, A a^{12} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 105 \, B a^{12} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a^{15}}}{60 \, d} \]

input
integrate(sec(d*x+c)^3*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^3,x, algorithm="g 
iac")
 
output
1/60*(60*B*log(abs(tan(1/2*d*x + 1/2*c) + 1))/a^3 - 60*B*log(abs(tan(1/2*d 
*x + 1/2*c) - 1))/a^3 + (3*A*a^12*tan(1/2*d*x + 1/2*c)^5 - 3*B*a^12*tan(1/ 
2*d*x + 1/2*c)^5 + 10*A*a^12*tan(1/2*d*x + 1/2*c)^3 - 20*B*a^12*tan(1/2*d* 
x + 1/2*c)^3 + 15*A*a^12*tan(1/2*d*x + 1/2*c) - 105*B*a^12*tan(1/2*d*x + 1 
/2*c))/a^15)/d
 
3.2.1.9 Mupad [B] (verification not implemented)

Time = 13.49 (sec) , antiderivative size = 124, normalized size of antiderivative = 0.99 \[ \int \frac {\sec ^3(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^3} \, dx=\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3\,\left (\frac {A-B}{12\,a^3}+\frac {A-3\,B}{12\,a^3}\right )}{d}+\frac {\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (\frac {A-B}{4\,a^3}+\frac {A-3\,B}{4\,a^3}-\frac {A+3\,B}{4\,a^3}\right )}{d}+\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5\,\left (A-B\right )}{20\,a^3\,d}+\frac {2\,B\,\mathrm {atanh}\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{a^3\,d} \]

input
int((A + B/cos(c + d*x))/(cos(c + d*x)^3*(a + a/cos(c + d*x))^3),x)
 
output
(tan(c/2 + (d*x)/2)^3*((A - B)/(12*a^3) + (A - 3*B)/(12*a^3)))/d + (tan(c/ 
2 + (d*x)/2)*((A - B)/(4*a^3) + (A - 3*B)/(4*a^3) - (A + 3*B)/(4*a^3)))/d 
+ (tan(c/2 + (d*x)/2)^5*(A - B))/(20*a^3*d) + (2*B*atanh(tan(c/2 + (d*x)/2 
)))/(a^3*d)